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Abstract
Dynamic relational processes, such as e-mail exchanges, bank loans, and scientific citations, are important 
examples of dynamic networks, in which the relational events constitute time-stamped edges. There are 
contexts where the network might be considered a reflection of underlying dynamics in some latent space, 
whereby nodes are associated with dynamic locations and their relative distances drive their interaction 
tendencies. As time passes, nodes can change their locations assuming new configurations, with different 
interaction patterns. The aim of this manuscript is to define a dynamic latent space relational event model. 
We then develop a computationally efficient method for inferring the locations of the nodes. We make use 
of the expectation maximization algorithm, which embeds an extension of the universal Kalman filter. 
Kalman filters are known for being effective tools in the context of tracking objects in the space, with 
successful applications in fields such as geolocalization. We extend its application to dynamic networks by 
filtering the signal from a sequence of adjacency matrices and recovering the hidden movements. Besides 
the latent space, our formulation includes also more traditional fixed and random effects, thereby achieving 
a general model that can suit a large variety of applications.
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1 Introduction
Networks appear in many contexts. Examples include gene regulatory networks (Signorelli et al., 
2016), financial networks (Cook & Soramaki, 2014), psychopathological symptom networks (De 
Vos et al., 2017), political collaboration networks (Signorelli & Wit, 2018), and contagion net
works (Užupytė & Wit, 2020). Studying networks is important for understanding complex rela
tionships and interactions between the components of the system. The analysis can be difficult due 
to the many endogeneous and exogeneous factors that may play a role in the constitution of a net
work. The aim of statistical modelling in this context is to describe the underlying generative pro
cess in order to assist in identifying drivers of these complex interactions. These models can assist 
in learning certain features of the process, filtering noise from the data, thereby making interpret
ation possible.

In this manuscript, we are considering temporal random networks, whereby nodes make in
stantaneous time-stamped directed or undirected connections. Examples are email exchanges, 
bank loans, phone calls, article citations. A common approach to these networks has been flatten
ing the time variable and studying the resulting static network. Although this method simplifies the 
complexity of the calculations, clearly there is a loss of information about the temporal structure of 
the process. Most networks are inherently dynamic. Subjects repeatedly create ties through time. 
Since the adjustment of ties is influenced by the existence and non-existence of other ties, the net
work is both the dependent and the explanatory variable in this process (Brandes et al., 2009). 
Thus, rather than viewing this as a static network, we consider the generative process as a network 
structure in which the actors interact with each other through the time. Edges are defined as in
stantaneous events. This quantitative framework is known as relational event modelling.
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The basic form of a relational event model (REM) as an event history model can be found in 
Butts (2008) with an application to the communications during the World Trade Center disaster. 
The model has been extended by Brandes et al. (2009) to weighted networks: nodes involved in 
these events are actors, such as countries, international organizations, or ethnic groups. An event 
is assigned a positive or negative weight depending on a cooperative or hostile type of interaction, 
respectively. Other examples of relational event modelling include the work by Vu et al. (2017) on 
interhospital patient transfers within a regional community of health care organizations or the 
analysis of social interaction between animals (Tranmer et al., 2015).

In a relational event model, the connectivity may depend on the past evolution of the network. 
Keeping track of the past is challenging for dynamic networks because of the high number of pos
sible configurations (k-stars, k-triangles, etc.) that could be taken into account, as well as their 
closure time and the time they keep affecting future configurations. We thus propose to take 
some kind of summary of the past configurations. A solution that can both summarize the process 
and approximate effectively the past information is the idea of a dynamic latent space. To describe 
the latent structure of a network, one can think of placing the vertices in a space where the distance 
between two points describes the tendency or lack of tendency to connect. Among social scientists 
this is typically called a social space where actors with more interactions are close together and vice 
versa (Bourdieu, 1989). The locations are allowed to change in time. At each time point, new con
nections are formed and the subjects develop attraction/repulsion that force them to change their 
social space configuration. The new configuration is the one that best reflect the new connectivity 
behaviour. As a result, one location at a certain time reflects past information, within the limits of 
the latent space formulation. This evolution describes the social history of the subjects, their pref
erences, and the groups they might join or leave.

There are other temporal network models. The stochastic actor oriented model (Snijders & 
Pickup, 2017) defines relationships between social actors that can be created and destroyed. 
This model is very useful to model interactions that extend in time but are less suitable to model 
instantaneous interactions, such as communication, patent citations, or financial transactions. The 
temporal exponential random graph models (Hanneke et al., 2010) model sequences of networks. 
This approach is agnostic about the underlying generative process but typically would also focus 
on persistent network relations. Here we focus on instantaneous interactions, which makes the use 
of relational event models the method of choice.

1.1 Related work and novelty of the proposed method
The problem of tracking latent locations has been studied by many authors, specifically for the 
static case, i.e., tracking locations under the assumption that they are fixed over time. For static 
binary random graphs, Hoff et al. (2002) provide a framework for inference. Some extensions 
of that model have been developed to overcome the limitations of the latent space formulation 
(Hoff, 2005, 2008, 2009). The well-known stochastic block model describes the similarity be
tween the actors by grouping them together, which is similar to latent space formulation. An ex
tension of stochastic block modelling to relational event data is provided by DuBois et al. (2013).

An approach for modelling latent space dynamic binary networks was proposed by Sarkar and 
Moore (2005). The method is based on an initial preprocessing phase where rough location 
guesses are found through generalized multidimensional scaling, followed by an estimation phase 
in which the dynamic locations are treated as fixed parameters and optimized via a conjugate gra
dient method. The distances between nodes are approximated by thresholding larger ones and in
cluding an additional penalty for forcing distant nodes to be closer. In this work, we avoid making 
ad hoc inference assumptions.

Sewell and Chen (2015) propose a Bayesian latent space model for temporal binary networks 
where its radius interpretation of the linear predictor reduces to a Hoff et al. (2002) model with 
the addition of node specific random effects. The method employs a Metropolis-within-Gibbs ap
proach, whose computational burden of MCMC integration increases exponentially with the la
tent dimension d, the number of nodes p, and the number of time points n. Although case-control 
sampling (Raftery et al., 2012) reduces the likelihood computation from O(np2) to O(np), its ac
curacy depends on extensive stratification. By considering one control stratum, Sewell and Chen 
(2015) weigh heterogeneous distances in the same way, producing a bias. This leads to paradoxical 
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overlapping of unconnected nodes. Durante and Dunson (2016) developed a Bayesian approach 
using Polya-Gamma data augmentation for binary links and Gaussian processes for parameter dy
namics combined with a non-Euclidean dissimilarity measure. In contrast to the previous two 
Bayesian approaches, we tackle the problem from a frequentist perspective, which does not require 
data augmentation. Our expectation-maximization (EM) algorithm combined with a Kalman fil
ter is deterministic and does not suffer from Bayesian convergence issues. It scales linearly with the 
number of time periods and achieves a good latent representation after few iterations. It can scale 
to several hundred nodes without case-control subsampling. Moreover, whereas Durante and 
Dunson (2016) assume a discrete time sequence of binary adjacency matrices, we embed our dis
crete time observation process into a often more realistic continuous time relational event process. 
Furthermore, we explicitly consider the availability of covariates, which allow for further disen
tanglement of known drivers of the interaction dynamics from the unknown factors. Although 
non-Euclidean alternatives can easily be added, our implementation focuses on an easily interpret
able Euclidean latent space.

1.2 The methodology presented
A dynamic latent space model is particularly useful in an exploratory stage of the analysis. It al
lows for an interactive investigation of the data to generate hypotheses about the drivers of the 
generative process by seeing which nodes are close and which nodes are far apart, as well as the 
way they develop through time. The most obvious example of this approach is simply by visual
izing the development of the latent node locations in two dimensions. However, simple multivari
ate analysis tools, such as Principal Component Analysis, can also explore latent spaces with 
higher dimensions. If the aim of the analysis is entirely predictive, then the latent space model itself 
may be of interest as it can be used to generate predictions without knowing the underlying drivers 
of the process.

The aim of this manuscript is to develop an efficient inference scheme for a relational event pro
cess embedded in a latent Gaussian process. The framework is very general and can be extended to 
networks with weighted edges of any exponential family distribution. There are two dual repre
sentations of the process, either as a continuous time exponential or as discrete Poisson counts. 
Depending on the sparsity of the observed process, one or the other can be selected in the inference 
procedure. Furthermore, the theoretical burden of the expectation maximization framework in the 
model has been reduced to two analytical steps: for the E-step, a Kalman filter and smoother is 
used, whereas for the M-step, a generalized linear model framework is derived. Both are provided 
by modern packages. Our latent space relational event framework provides an accurate, simple, 
and computationally efficient way for inferring a wide general class of dynamic social network 
models.

Section 2 describes a motivating patent citation network example. In Section 3, several formu
lations of the latent space relational event model are presented. In Section 4, we propose an effi
cient inference method that is based on combining the state-space formulation of the model 
with the EM algorithm. In Section 5, we check the performance and limitations of our method 
via a simulation study. In Section 6, we analyze the latent structure of technological innovations, 
by studying over 23 million patent citations from 1967 until 2006.

2 Patent citation networks
Patents are legal documents of intellectual property that testify some technological innovation. 
Innovation itself is a complicated process and involves both true novelty as well as the adaptation 
of existing ideas in a new context. Within the patenting process, this borrowing of existing ideas 
are referred to as patent citations: each inventor that submits a patent to a patent office is required 
by law to include the current state-of-the-art on which the current patent is based by citing those 
patents in which those ideas have been deposited.

By tracing which patents cite which other patents, it is possible to establish a dynamic network 
in which patents accumulate over time citations from other patents. Alternatively, it is possible to 
group patents together into clusters and to track how these clusters cite and are cited by other clus
ters. Either way, the process of citation shows how certain patents at certain times are particularly 
important in the technological innovation process. As innovation is important for economical 

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/186/3/508/7126053 by Biblioteca universitaria di Lugano user on 04 Septem

ber 2024



J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 3                                                          511

progress and prosperity, it is little surprise that the analysis of the patent citation network has be
come an important field of study. It is of particular interest to find out what drives technological 
innovation (Lafond & Kim, 2019). Furthermore, economists are eager to find out whether or not 
the innovation process is changing over time.

The International Patent Classification (IPC) scheme is a hierarchical clustering scheme for pat
ents. It assigns each patent to eight main classes, to with, 

(A) : Human necessities: agriculture, foods, tobacco, personal, or domestic articles, health, life- 
saving, amusement.

(B) : Performing operations and transporting: separating, mixing, shaping, printing, transport
ing, nanotechnology.

(C) : Chemistry and metallurgy
(D) : Textiles; papers.
(E) : Fixed constructions: building, earth drilling.
(F) : Mechanical engineering; lightning; heating; weapons; blasting.
(G) : Physics: instruments, nuclear.
(H) : Electricity.

Within each main class, there are a large number of subclasses, resulting in overall roughly 500 
subclasses. Each subclass has again a number of groups and subgroups, which for the purposes 
of the analysis here we will ignore. Also, other grouping schemes are possible (Younge & 
Kuhn, 2016).

The National Bureau of Economic Research in the U.S. released in 2010 patent citation data, 
consisting of 3.1 million patents, 23.6 million citations over the period 1967–2006, with collection 
intervals of 1 year length. By studying how citing behaviour and being cited tendency of the classes 
and the subclasses changes over time, we aim to answer some of the questions we posed above. The 
latent representation allows for a straightforward similarity assessment, showing which fields are 
becoming more heterogeneous in their citation patterns. The aim is to develop a methodological 
framework for inferring dynamic latent space tracking of the technology classes and to show how 
this changes the nature of patent citations.

3 Latent space relational event models
In this section, we introduce a general version of a latent space relational event model. We consider 
a set of actors, defined as a finite vertex set V = {1, . . . , p}, that can exchange links or edges in time. 
In principle, we will consider the exchange of relational events, such as discrete interaction, e.g., 
sending an email or citing a patent, but we will also consider extensions to the quantitative ex
changes, such as import and export. As drivers of the exchange process, we consider both endoge
neous, such as reciprocity, and exogeneous variables, such as vertex characteristics. One particular 
exogeneous variable is the relative location of the vertices in some Euclidean latent space, which 
itself is defined as a dynamic process.

We consider a non-homogeneous multivariate Poisson counting process N = {Nij(t) | i, j ∈ 
V, t ∈ [0, T]} and a state-space process X = {Xi(t) ∈ Rd | t ∈ [0, T], i = 1, . . . , p} relative to 
some standard filtration F . In particular, we consider F -measurable rate functions λij(t) that drive 
the components of the counting process. In particular, we assume that the rates λij(t) are functions 
of the underlying positions Xi(t) and Xj(t), besides possible other exogeneous characteristics Bij(t) 
and endogeneous features N(t),

λij(t) = g(d(Xi(t), Xj(t)), Bij(t), N(t)), 

for some measurable function g. Two common choices for the way that the rate depends on the 
locations is either as a function of the squared distance,

d(Xi(t), Xj(t)) = ‖Xi(t) − Xj(t)‖2 
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or the relative activity dissimilarity d(Xi(t), Xj(t)) = 〈Xi(t), Xj(t)〉
‖Xi(t)‖

between i and j (Hoff et al., 2002). 
The former induces a symmetric interpretation, where the latter allows for a more complex asym
metric interpretation of the state-space. In this manuscript, we mainly focus on the Euclidean dis
tance, as we prioritize visual interpretation of the results. However, it is important to mention that 
switching to another dissimilarity measure requires very little effort. The interaction dynamics 
λij(t) can be highly structured and parametrized, i.e., g = gθ, whereas the state-space dynamics is 
assumed to be a random walk at equally spaced time points tx

k in [0, T],

Xtx
k

= Xtx
k

+ vk, k = 1, . . . , nx, (1) 

with vk ∼ N(0, Σ) and tx
0 = 0. In this manuscript, we use sometimes the more compact notation 

xk = X(tx
k) or X(k) when we find it more convenient. The covariance matrix Σ regulates the evolu

tion of the latent process: a large variance allows longer jumps. Given the joint formulation (X, N) 
of the state-space and interaction process, we will assume that only the interaction process N is 
observed and the main aim of this manuscript is to infer the structure of the state-space X and 
the rate functions λ, or more specifically, the parameter β associated with functional form λ = gβ.

Next, we will consider two particular special cases of the latent space formulation of the inter
acting point process defined above. First we consider the general case, in which the relational 
events are observed in continuous time. This is the traditional setting for relational events. We 
will also define a relational event model where the interactions can only happen at specific times. 
For example, bibliometric citations or patent citations only happen at prespecified publication 
dates. Furthermore, this model allows a generalization to non-binary relational events, such as ex
port between countries, that can be dealt with in the same inferential framework.

3.1 Continuous time relational event process N
We consider a sequence of ne relational events, {(i1, j1, te

1), . . . , (ine , jne , te
ne

) | te
i ∈ [0, T], i, j ∈ V} 

observed according to the above defined relational counting process N. In a latent space relational 
event model, the rate is defined as

log λij(t, x, β) = −d(xi(t), xj(t)) + βt
GBij(t) + βt

Ds({N(τ) | τ < t}), (2) 

where the latent space effect d(Xi(t), Xj(t)) that captures the ‘vicinity’ of the actors. The drivers of 
the network dynamics can be of various types: exogeneous effects, βt

GBij(t), such as global cova
riates, node covariates, edge covariates, as well as endogeneous effects, βt

Ds({N(τ) | τ < t}), where 
network statistics s() capture endogeneous quantities such as popularity, reciprocity, and triadic 
closure. The parameter vector β determines the relative importance of the various effects.

Conditional on the process X, the distribution of the interarrival time for interaction i→ j is 
generalized exponentials, with instantaneous rates as described in (2) and interval rates,

μk,ij(xk, β) = ∫t
x
k+1

tx
k

λij(t, x, β) dt = e−d(xi(tx
k
),xj(tx

k
))cij(k, β), (3) 

where cij() is the remaining integral and latent distance d() between the nodes is constant over the 
interval. The full log-likelihood of the complete process {X, N}, can be factorized into two com
ponents,

ℓ(β, Σ) = log pβ(n |x) + log pΣ(x), (4) 

where log pΣ(x) = − nx
2 log |Σ| − 1

2

􏽐nx
k=1 (xk − xk−1)′Σ−1(xk − xk−1) and log pβ(n |x) = −

􏽐
i≠j

􏽐nx
k=1 

μk,ij(xk, β) +
􏽐ne

k=1 log λikjk (te
k, xte

k
, β), where the generalized exponential formulation is the one 

adopted by Rastelli and Corneli (2021). Although it is common in the REM literature to simplify 
inference by using the partial likelihood, we keep the generalized exponential component, as it can 
be estimated more easily in the M-step of the EM algorithm, described in Section 4.
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3.2 Discrete time relational event process Y
Often relational events are ‘published’ only on prespecified discrete event times T = {te

1, . . . , te
n}. 

For simplicity of notation, we will assume that the relational event collection process and the 
jumps of the latent space are equal, i.e., n = nx = ne and {t1 = tx

1 = te
1, . . . , tn = tx

n = te
n}. We make 

an additional assumption that the rate λ is constant with respect to the endogeneous and exoge
neous variables inside the collection intervals (tk, tk+1]. In fact, with respect to the endogeneous 
variable N it makes sense that no further information between the publication dates affects the 
rates. In other words, assuming a log link for the hazard, for t ∈ (tk, tk+1],

log λij(t, x, β) = −d(xi(tk), xj(tk)) + βt
GBij(tk) + βt

Ds({N(τ) | τ ≤ tk}). (5) 

As the interactions i→ j are collected at tk+1 from the observation intervals (tk, tk+1], the resulting 
interval counts

yk,ij = Nij(tk+1) − Nij(tk) 

of the number of interactions between i and j are Poisson distributed with interval rate,

μk,ij(xk, β) = ∫tk+1

tk
λij(t, x, β) dt = (tk+1 − tk)λij(tk, x, β). (6) 

An advantage of using discrete time is the reduction of the model complexity. It is not uncommon 
to observe thousands, even millions of links. Such numbers are not surprising when we consider 
p(p − 1) processes having an expected number of links E[

􏽐
p(p−1) Nij(t)] that grows rapidly. The 

model can be written as a discrete-time state space process,

xk ∼ N(xk−1, Σ), k = 1, . . . , n,
yk,ij ∼ Poi(μk,ij(xk, β)), 1 ≤ i ≠ j ≤ p.

􏼚

(7) 

Given the complete observations (x, y), the complete log-likelihood for the state space model in (7) 
can again be factorized into two components,

ℓ(β, Σ) = log pβ(y |x) + log pΣ(x), (8) 

where log pβ(y |x) = −
􏽐

kij μk,ij(xk, β) +
􏽐

kij yij(k) log μk,ij(xk, β) and log pΣ(x) as above, where the 
factorization is according to the directed graph in Figure 1, where yk ⊥ y−k, x−k |xk and 
xk+1 ⊥ xk−1 |xk. Similar to Butts (2008) and Perry and Wolfe (2013), who focused on non- 
homogeneous exponential waiting times, this approach focuses on non-homogeneous Poisson 
counts.

One advantage of the latent space formulation is the dimensionality reduction in the latent re
presentation. As the number of nodes p increases, the number of observed counts p(p − 1)n grows 
quadratically, while the latent space grows linearly as pdn.

Dynamic exponential family network model
Given the state space formulation in (7), it is possible to generalize the model considering connections 
drawn from any exponential family distribution without changing the inference procedure. In fact, 

Figure 1. The observed counts yk are a result of the dynamics in node locations xk . Hence, y is independent 
conditionally to the latent locations x.
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ignoring the connection with any underlying counting process, we could define a temporal network 
process on discrete time intervals k (k ∈ {1, . . . , n}) between nodes i and j as 
f (yij(k)) = exp ((yij(k)θij − b(θij))/a(φ) + c(yij(k), φ), where θij is the edge-specific canonical parameter. 
Using the canonical link function, we can specify the canonical parameter in a similar fashion to (5),

θij(xk) = −d(xki, xkj), 

where the values for x are the latent states as before. It is also possible to add additional covariates, but we 
do not consider this case here. In Online Supplementary Materials D, we show how to obtain the Kalman 
update equation for any exponential family. The inferential method presented in this manuscript remains 
mostly the same with a minimal change, effectively replacing the mean μ(xk) and variance Rk of the pro
cess by

μ(xk) = b′(θ)|xk
and Rk = b′′(θ)a(φ)|xk

.

This generalized temporal network model can be used to model import and export or other dynamic net
works with weighted edges.

Marginalization
One of the main advantages of our latent space network model is that, unlike many other network 
models, it is coherent under sampling a subset of nodes. Given that any subset V′ of V maintains 
the same distances among nodes, the distribution of the restricted node set PV′ is the same as the 
marginalized distribution of the full model PV|V′ . This invariance means that it is unimportant to 
which node set the observed nodes actually belong. Therefore, for the true latent dimension d, as 
well as for any dimension higher than that, the model is invariant under marginalization. The only 
effect of subsampling is on inference, in that the conditional variance of the latent locations given 
the restricted nodes is larger than when given the full node set V, as they have fewer triangulation 
opportunities.

4 Inference
In this section, we develop all the necessary steps for making inference on the latent states xk and 
the parameters Σ an β. Since the latent process xk is unobserved, we aim to maximize 
∫x L(β, Σ; y, x) dx. We use the expectation maximization (EM) algorithm (Dempster et al., 
1977). The EM algorithm is widely used in problems where certain variables are missing or latent. 
The EM algorithm consists of an iterative maximization of the conditional expectation of the la
tent process X |N, β, Σ with respect to the data.

Due to the stepwise dynamic of the latent locations (1), the expectation step is equivalent for 
both models presented in Sections 3.1 and 3.2. As the locations are constant within intervals T , 
the continuous time non-homogeneous exponential relational event model N reduces to a discrete 
time Poisson model during the E-Step,

Q(β, Σ | β∗, Σ∗) = EX[ℓ(β, Σ) | y], 

where β∗, Σ∗ denotes the parameters estimated at the previous EM iteration. In the maximization 
step, Q(β, Σ | β∗, Σ∗) is maximized with respect to the parameters β, Σ. The two steps above are iter
ated until convergence is reached. The expectation step is typically challenging due to the high di
mensional nature of the integral.

The expectation of the log-likelihood can approximately be written as a function of the first two 
conditioned moments E[xk | y1:n] and V[xk | y1:n]. Exploiting the state space formulation of the 
model (7) we can estimate these two quantities with a Kalman filter and smoother (Kalman, 
1960). The filter derives mean and variance of the latent process xk conditioned to the information 
on y up to time k,

x̂k|k = E[xk | y1:k] Vk|k = V[xk | y1:k].
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The smoother refines these quantities accounting for the complete information on y up to time n,

x̂k|n = E[xk | y1:n] Vk|n = V[xk | y1:n].

The expected log-likelihood can be then calculated using these quantities obtained from the 
smoother.

4.1 E-step: extended Kalman filter
The Kalman filter is one of the most popular algorithms for making inference on state space models and 
it provides a solution that is both computationally cheap and accurate. Kalman filter is an iterative 
method that calculates the conditional distribution of the latent xk. Given the causal Directed 
Acyclic Graph at Figure 1, xk depends on xk−1 and the observed yk. Assuming a prior knowledge 
on the distribution of xk−1, the conditional distribution of xk is calculated easily. The procedure is ap
plied sequentially from time 1 to n, where the conditional distribution achieved at time k becomes the 
prior knowledge for the next time point. An arbitrary distribution is specified for the initial x0. 
Calculating the conditional distribution entirely could be difficult so the first moments are calculated 
only. The calculation of the conditional probability involves two steps that are universal in the filtering 
literature: predict and update. In order to be consistent with the forementioned literature, we denote 
x̂k|k = E[xk | y1:k] and Vk|k = V[xk | y1:k] as the expectation and variance conditioned of having ob
served yk. Note that xk and yk are vectors of length px = pd and py = p(p − 1) or p(p − 1)/2 in case 
of an undirected network, respectively. These correspond to the vectorized coordinate and adjacency 
matrices at time k, respectively. Σ is a pd × pd matrix and is constant over time. Rk the observed data 
variance is a diagonal py × py matrix. The latent process conditional variance Vk is a px × px matrix, 
whereas the Jacobian matrix Hk is of size px × py.

Predict
Assume that, at time k − 1, the approximated conditional distribution of the latent locations is 
xk−1|k−1 ∼ N(x̂k−1|k−1, Vk−1|k−1). For the initial case k = 1, we set arbitrarily x0|0 = v0 and 
V0|0 = Σ0. The predict step calculates the first moments of xk conditioned to yk−1. In fields such phys
ics, chemistry, or engineering it is common to employ a forward function xk = f (xk−1) + vk which is 
related to the physical properties of the system. In our case, the random walk formulation makes no 
constraints on the latent process evolution. The forward function is the identity with moments

x̂k|k−1 = E[xk−1 + vk | y1:k−1] = x̂k−1|k−1,

Vk|k−1 = V[xk−1 + vk | y1:k−1] = Vk−1|k−1 + Σ.

These are called the apriori mean and variance of the latent locations before observing yk. The prior 
distribution is xk|k−1 ∼ N(x̂k|k−1, Vk|k−1).

Update
The update step finalizes the calculation of the conditional distribution. We consider the mean vec
tor of all the pairwise relationships μ(xk, β) : R px → Rpy described at (3) and (6) and covariance ma
trix V[yk] = Rk where counts are independent with variance equal to the mean Rk = μ(xk, β)Ipy . In 
case a general dynamic network model using exponential family weighted edges, as described in 
Section 3.2, is considered then the mean μ(xk) and variance Rk vary accordingly.

Kalman filters assume that the observed process yk is Gaussian and the transformations involved 
are linear. The extended Kalman filter (EKF)(Anderson & Moore, 2012) overcomes the Kalman 
filter limitations. By means of a first order Taylor expansion

μ(xk, β) = μ(x̂k|k−1, β) + Hk(xk − x̂k|k−1), Hk =
∂μ(x, β)

∂x

􏼌
􏼌
􏼌
􏼌
x̂k|k−1

, (9) 

we calculate the expectation E[yk|yk−1] = μ(x̂k|k−1, β), variance V[yk|yk−1] = HkVk|k−1H′k + Rk, 
and covariance Cov[xk, yk | yk−1] = Vk|k−1H′k of the conditional predictive distribution of yk.
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The joint multivariate distribution of the observed and latent process is

xk
yk

􏼔 􏼕􏼌
􏼌
􏼌
􏼌y1:k−1 ∼ L x̂k|k−1

μ(x̂k|k−1, β)

􏼔 􏼕

,
Vk|k−1 HkVk|k−1

Vk|k−1Hk′ HkVk|k−1Hk′ + Rk

􏼔 􏼕􏼒 􏼓

, 

where L is some probability law parametrized by the first two moments. Using the multivariate 
regression formulation, we have the conditional moments of xk

x̂k|k = E[xk | y1:k] = x̂k|k−1 + Kk(yk − μ(x̂k|k−1, β), )

Vk|k = E[(xk − x̂k|k)(xk − x̂k|k)′ | y1:k] = (I − KkHk)Vk|k−1,

Kk = Vk|k−1H′k(Rk + HkVk|k−1H′k)−1,

(10) 

see at Online Supplementary Materials A for more details. We hence obtain posterior distribution 
xk|k ∼ N(x̂k|k, Vk|k), which is approximated to be Gaussian. This will be the starting distribution 
for the inference at time k + 1. The filtering procedure is shown in Algorithm 1. In Figure 2, we 
show a visual representation of the algorithm: at each time point, the model takes as input an ad
jacency matrix and returns the locations in the latent space.

Algorithm 1 Extended Kalman Filter

Initialize x̂0|0 = v0 and V0,0 = Σ0

for k = 1, …, n do

(a) Filter prediction step 
x̂k|k−1 = x̂k−1|k−1

Vk|k−1 = Vk−1|k−1 + Σ
(b) Filter update step 

x̂k|k = x̂k|k−1 + Kk(yk − μ(x̂k|k−1, β))
Vk|k = (I − Kk Hk)Vk|k−1

where 

Kk = Vk|k−1H
′

k(HkVk|k−1H
′

k + Rk)−1

Hk = ∂μ(x, β)
∂x |x̂k|k−1

Rk = μ(x̂k|k−1, β)Ipy

In the update step, the latent locations are updated according to the magnitude of the prediction 
error: a larger error in the prediction corresponds to a wider change in the locations. The filtering 
matrix Kk, capturing the linear relationship between the latent and observed processes, weights 
this prediction error. Kk is the ratio between the noise Rk and the latent variance Σ. Thus, Kk filters 

Figure 2. The filtering model takes as input a sequence of adjacency matrices and update the node locations in the 
latent space.
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the prediction error according to the signal/noise ratio. Fahrmeir (1992) simply considers it as a 
single Fisher scoring step, see Online Supplementary Materials D.

The Kalman filter can be interpreted both in a frequentist and Bayesian way. From a Bayesian 
Perspective, the filtering procedure consists of a sequence of updates of the posterior mean and 
variance (Gamerman, 1991, 1992; West et al., 1985), whereas from a frequentist side, the estima
tion based on the posterior mode is equivalent to the maximization of a penalized likelihood 
(Fahrmeir, 1992; Fahrmeir & Kaufmann, 1991), see Online Supplementary Materials D. 
Approximating the posterior distribution with the same family of the prior, i.e., Gaussian, the pos
terior mean is equivalent to the posterior mode and hence the equivalence of the two approaches. 
This double interpretation makes Kalman filters appealing for both types of applications.

Smoother
The smoother moves backward from the last prediction to the first. It calculates the first moments 
of the latent process conditioned to the information of all time points. Similarly as the EKF, the 
backward matrix B can be calculated considering the multivariate distribution of the latent loca
tions at two consecutive time points,

xk−1
xk

􏼔 􏼕􏼌
􏼌
􏼌
􏼌y1:k−1 ∼ N

x̂k−1|k−1
x̂k|k−1

􏼔 􏼕

,
Vk−1|k−1 Vk−1|k−1
Vk−1|k−1 Vk|k−1

􏼔 􏼕􏼒 􏼓

.

Using the multivariate regression formula, we have the conditioned mean of xk−1 over xk,

E xk−1 |xk, y1:k−1
􏼂 􏼃

= x̂k−1|k−1 + Bk(xk − x̂k|k−1) with Bk = Vk−1|k−1V−1
k|k−1 

According to the conditional independence in Figure 1, we have (xk−1 ⊥ yk : n) |xk since xk closes 
the dependency path. Using the iterated expectation rule, we have

x̂k−1|n = E xk−1 | y1:n
􏼂 􏼃

= E E xk−1 |xk, y1:n
􏼂 􏼃

| y1:n
􏼂 􏼃

= E E xk−1 |xk, y1:k−1
􏼂 􏼃

| y1:n
􏼂 􏼃

= E x̂k−1|k−1 + Bk(xk − x̂k|k−1) | y1:n
􏼂 􏼃

= x̂k−1|k−1 + Bk(x̂k|n − x̂k|k−1) 

where x̂k−1|k−1 and x̂k|k−1 are constants. In the same way using the iterated variance rule

V xk−1 | y1:n
􏼂 􏼃

= E V xk−1 |xk, y1:n
􏼂 􏼃

| y1:n
􏼂 􏼃

+ V E xk−1 |xk, y1:n
􏼂 􏼃

| y1:n
􏼂 􏼃

= Vk−1|k−1 − BkVk|k−1B′k + BkVk|nB′k
= Vk−1|k−1 + Bk(Vk|n − Vk|k−1)B′k, 

see at Online Supplementary Materials B for more details. The smoothing procedure is presented 
in Algorithm 2 and it is known as the RauchTung–Striebel smoother. The final iteration of the 
smoother updates the starting values x̂0|0 and V0|0. These values will be used as starting points 
for the successive EM iteration.

Algorithm 2 Smoother

for k = n, …, 1 do

Backward step 

x̂k−1|n = x̂k−1|k−1 + Bk(x̂k|n − x̂k|k−1)
Vk−1|n = Vk−1|k−1 + Bk(Vk|n − Vk|k−1)B

′

k

where 

Bk = Vk−1|k−1V−1
k|k−1
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4.2 M-step: generalized linear model
In the maximization step, we maximize the log-likelihood with respect to the parameters β, Σ and 
we make the first distinction between the continuous (4) and discrete (8) time models. For the con
tinuous time process N, the expected log-likelihood is

QN(β, Σ | β∗, Σ∗) = EX[ log pβ(N |X) | y1:n] + EX[ log pΣ(X) | y1:n] = QE(β) + QG(Σ).

For the discrete time process Y, the expected log-likelihood is

QY(β, Σ | β∗, Σ∗) = EX[ log pβ(Y |X) | y1:n] + EX[ log pΣ(X) | y1:n] = QP(β) + QG(Σ).

Notice that the Poisson component QP(β) and exponential component QE(β) do not depend on Σ, 
whereas the Gaussian component QG(Σ) does not depend on the remaining parameters β. These 
quantities can, therefore, be optimized separately.

Gaussian component
We can maximize the Gaussian component

QG(Σ) = −
1
2

􏽘n

k=1

E[(xk − xk−1)′Σ−1(xk − xk−1) | y1:n] − n log |Σ | −
n
2

log (2π).

finding the zero of the first derivative with respect to Σ. Rearranging the elements and taking the 
expectation as shown in Online Supplementary Materials C, we obtain

Σ̂ = E
1
n

􏽘n

k=1

(xk − xk−1)(xk − xk−1)′ ∣ y1:n

􏼢 􏼣

=
1
n

􏽘n

k=1

Vk|n + Vk−1|n + BkVk|n + Vk|nB′k + (x̂k|n − x̂k−1|n)(x̂k|n − x̂k−1|n)′.

This result corresponds to the one presented in Fahrmeir (1994). Substituting 
Vk|nB′k = Cov(xk|n, xk−1|n | y1:n), we have the equivalence with the result of Watson and Engle 
(1983).

The estimate of Σ plays the major role in the bias/variance trade-off. It can find interpretation in 
the univariate scenario. If the latent process has a small variance, then a little portion of the pre
diction error is used to update the locations and therefore the latent process moves slowly and 

Figure 3. The filtering procedure can be summarized as a sequence of predictions and updates. At each time step, a 
prediction on the observed link count is made. The prediction error is then propagated back to the nodes for updating 
their positions.
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delayed. When the variance is high, the estimated latent process is heavily influenced by the last 
observation and have a tendency to overfit the observed process. In some practical fields, the vari
ance is tuned manually by searching for overfitting or delayed behaviours in the errors. Our EM 
provides a precise solution and avoids manual tuning.

Poisson component
For arbitrary exponential family distributed edges, as described in Section 3.2, the observed pro
cess component can be maximized numerically with a general optimization algorithm. However, 
for Poisson distribution a more elegant solution is available. Consider the conditional expected 
rate in the interval t ∈ (tk, tk+1]

log (E[λij(t, xk, β)) | y1:n] = log (E[e−d(xki,xkj) | y1:n]) + βt
GBij(tk) + βt

Ds({N(τ) | τ ≤ tk}), (11) 

with its associated expected cumulative hazard across the entire interval 
μ∗k,ij(y1:n, β) = (tk+1 − tk)E[λij(t, xk, β)) | y1:n]. The expectation of the Poisson component for the dis
crete time process Y can then be rearranged as follows:

QP(β) =
􏽘

kij

E[ − μk,ij(xk, β) + yk,ij log (μk,ij(xk, β)) − log (yk,ij!) | y1:n]

=
􏽘

kij

−μ∗k,ij(y1:n, β) + yk,ij log (μ∗k,ij(y1:n, β)) − log (yk,ij!) + C, 

which, up to an additive constant, is a Poisson log-likelihood parametrized by μ∗k,ij(y1:n, β). The op
timization can be performed by fitting a generalized linear model (McCullagh, 2018) with the 
above linear predictor and the offset log (E[e−d(xki,xkj) | y1:n]). See Online Supplementary 
Materials C for the full derivation. The expected value in the offset cannot be further simplified. 
We use a second order Taylor approximation, which can be expressed as a function of the first two 
moments of the latent locations, x̂k|n = E[xk | y1:n] and Vk|n = V[xk | y1:n]. Consider 
gij(x) = e−d(xki,xkj), then the expectation within the off-set is approximately

E[gij(x) | y1:n] ≈ gij(x̂k|n) +
1
2

trace
∂2gij(x)

∂2x
|x̂k|n

Vk|n

􏼒 􏼓

, 

since the expectation of the first derivative is zero. Simulation studies show that if the latent space 
changes smoothly, i.e., a low value on the diagonal of Σ, the approximation is almost perfect.

Above we have described the linear fixed effect case. In the case non-linear or random effects are 
required then generalized additive modelling (Wood, 2006) can be inserted in this part of the 
M-step. This formulation is very general and employs spline bases for estimating non-linear or 
time-varying effects.

Exponential component
The expectation of the exponential component for the continuous time process N is

QE(β) = E −
􏽘

i≠j

􏽘nx

k=1

μk,ij(xk, β) +
􏽘ne

k=1

log λikjk (tk, xtk
, β)

􏼢 􏼣

Note that, up to a multiplicative constant yk,ij, the exponential log-likelihood factorizes similarly 
to that of the Poisson. Also in this case the expected log-likelihood can be rewritten as an exponen
tial log-likelihood with the same offset as in Equation (11). Inference involves survival regression 
with exponential waiting times. In case the hazard in Equation (2) would also contain an unknown 
time-varying baseline hazard λ0(t) common to all nodes V, then the M-step could proceed using the 
partial likelihood as in Cox proportional hazard regression (Cox, 1972). 
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Algorithm 3 Expectation Maximization

Initialize x̂0|0 = v0, V0|0 = Σ, Σ = Σ0 and β = β0

While not converged do

(a) Expectation: 
– Extended Kalman Filter
– Smoother

(b) Maximization and update of starting values: 
β = GLM
Σ = Σ̂
x̂0|0 = x̂0|n

V0|0 = V0|n

(c) Check for convergence

4.3 Computational aspects
The p2 × p2 matrix inversion in (10) represents a computational bottleneck in many Kalman filter 
applications. However, there are cases where the dimension of the latent process is much smaller 
than the observed process dimension. The Sherman–Morrison–Woodbury identity can be em
ployed

Rk + HkVk|k−1H′k
( 􏼁−1 = R−1

k − R−1
k Hk(V−1

k|k−1 + H′kVk|k−1Hk)−1H′kR−1
k 

and requires p × p matrices inversion only. As the latent space employed by our model has a cheap 
p-dimensional representation our scenario is particularly appealing for the application of the 
ShermanMorrison–Woodbury identity. The identity is closely related to the Information Filter 
(see the Online Supplementary Materials D). The overall computational cost of the algorithm is 
therefore dominated by the inversion of a p × p matrix (Mandel, 2006).

4.4 Goodness-of-fit and model selection
The conditional distribution of the latent space x conditioned to the observed process y can be used 
for assessing the uncertainty about the latent process. Variability bands can be drawn by using the 
quantiles of the distribution xk|n ∼ N(x̂k|n, Vk|n) and the user can visually check whether the dy
namic locations are far from being a constant line, as shown in Figure 4.

Akaike Information Criterion
The dimension d of the latent space can be selected by using some Information Criterion such as 
the cAIC

cAIC = −2 log f (y | β̂, x̂) + 2Φ, 

where Φ is the effective degrees of freedom of the fixed and random latent part of the model. 
Saefken et al. (2014) present a unifying approach for calculating the conditional Akaike informa
tion in generalized linear models that can be used in this context. This allows us to select the latent 
space dimension d that minimizes the conditional Akaike criterion. The cAIC can also be used for 
choosing between different variance structures, e.g., a diagonal matrix Σ with either the same or 
different diagonal elements, or for choosing between a static or a dynamic latent model. The static 
model, where all the locations are fixed in time, can be obtained by modifying our algorithm, as the 
static model can be viewed as a dynamic model with one single time interval, grouping together all 
time intervals. The filtering procedure is reduced to updating the locations with Σ̂ = 0.

4.5 Identifiability and divergence
The latent space formulation is identifiable with respect to the relative distances but unidentifiable 
in the locations (Hoff et al., 2002): infinite combinations of rotations and translations have the 
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same distances and therefore the same likelihood. This implies the non-identifiability of Σ, as the 
coordinate system rotates. Each update of the filter and smoother may involve a certain shift and 
rotation in the next location configuration. As a result, when we update the starting points x0|0 for 
the next EM iteration they may be shifted and rotated, with related rotation for Σ. These move
ments become stable as the starting points x0|0 converge. It is however possible to make Σ fully 
identifiable, by fixing d + 1 constraints on the node locations. Alternatively, one can specify Σ 
spherical or spherical within each node, to obtain an identifiable Σ. In principle, it is possible to 
extend the latent model to steps with time-varying Σt, but it would require additional assumptions. 
For example, assuming that the d × d diagonal submatrices of the dp × dp matrix Σt are identical 
makes it identifiable. However, this is undesirable from a practical point of view as it would 
make each node equally variable, which is clearly not the case in many scenarios. Instead, we pre
fer to interpret the time-homogeneity of Σ as a Bayesian prior on X: rather than being an assump
tion on the underlying generating process of X, it guarantees the ‘continuity’ of X as well as 
identifiability of a particular axis of rotation of the latent space. Clearly, this assumption affects 
the posterior distribution of X, but not strongly its posterior mean, which is our main quantity 
of interest.

A practical aspect of Kalman filter users may encounter when working on real data is divergency 
issues of the algorithm, defined as generating unbounded state value residuals within the proced
ure (Fitzgerald, 1971). Many factors can influence the divergence tendency such as a wrong vari
ance specification in Rk, poor approximation of non-linearity, inappropriate initial choice β, 
abrupt changes in link rates, too large variances on the diagonal of V0|0 and Σ or poor initial latent 
state values x0. In the case of bad starting points x0, the update of locations might have abrupt 
changes because in a non-convex likelihood optimization locations jump to find a more stable 
configuration.

Fine-tuning parameters and starting points can resolve the above problems. Artificially inflating 
Rk solves the overdispersion problems, although inferring the correct variance function of the data 
might take some extra effort. Sufficiently good x0|0 points can be calculated via multidimensional 
scaling or reversing the time dimension and running the Kalman Filter backward. Furthermore, 
starting the EM close to the static model, by setting the diagonal values of V0|0 and Σ low, always 
leads to stable Kalman update. In fact, the latent space variances can be seen as tuning parameters 
that can be expanded slowly to allow for more movement in the latent space. Where possible, one 
eventually expands them towards the maximum likelihood values. Otherwise, a profile maximum 
likelihood estimate will be the best alternative.

Figure 4. An example of the model fit of the latent space on simulated data with 10 nodes. The two plots represent 
the d = 2 latent space dimensions, x1 and x2, across time k for five nodes, by plotting x̂k|n and their variability bands 
x̂k|n ± 1.96

�����
Vk|n

􏽰
. Such quantities are produced by the Kalman smoother, allowing for a straightforward assessment 

of the model fit. The black line represents the true locations of the simulated data. Procrustes rotation is used to find 
the best match between the fit and the truth.
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5 Simulation study
In order to assess the method performance, we carry out a simulation study. We specify logistic 
functions for the latent location trajectories xk, rescaling and shifting these functions in different 
ways. The link counts are generated from a Poisson distribution with log (μk,ij(xk)) = α − ‖xki − 
xkj‖

2
2 for p nodes across n intervals with d latent dimensions. The simulation study involves vary

ing the number of nodes, intervals, and dimension. We also propose some challenges to the model 
such as the misspecification of the distribution family, high clustering, or sparsity behaviour. 
Optimal starting points are calculated via the static model as described in Section 4.5. We use 
the out-of-fold Kullback–Leibler divergence as performance measure,

KL(x̂, xtrue) = Ey log p(y |xtrue) − log p(y | x̂)
􏼂 􏼃

≈
􏽐

log p(ynew |xtrue) − log p(ynew | x̂)
np(p − 1)/2

, 

where ynew denotes an additional sample that is generated from xtrue. The Kulback–Leibler is a per
formance measure based on the distance matrix, which is invariant to rotations and translations of 
the locations.

Varying the number of nodes p
Figure 5a shows the results of varying the number of nodes p = 5, 10, 25, 50. The EKF perform
ance improves as p increases dramatically. This is a consequence of, on the one hand, a quadratic 
increase in the number of possible interactions and, on the other, a quadratic increase of the num
ber of triangulation opportunities in the latent space.

Varying the number of intervals n
Figure 5b shows the results of varying the number of observed time sub-intervals 
n = 10, 50, 100, 1000. Again, the EKF performance improves with the increase of n. The reason 
for the improvement is that when the same time interval is divided in a larger number of sub- 
intervals, it reduces the effective latent space variance and it increases the number of observations.

Varying the latent dimension d
Figure 5c shows a slight decrease in the performance when increasing the true latent dimension d. 
Clearly, when the latent dimension increases, the number of observations remains constant, but 
the dynamics becomes more complex, resulting in an increase of the KL divergence.

Effect of model misspecification: overdispersion
In Figure 5d we investigate the inference behaviour under one type of model misspecification, 
namely, overdispersion. We simulate data from a negative binomial with mean μk,ij(xk) and a 
quadratic variance function μk,ij(xk) + μk,ij(xk)2 and compare the performance of the EKF to 
data simulated from a Poisson distribution with the same increasing mean μk,ij(xk). For low rates, 
the negative binomial variance is almost the same as that of the Poisson, and here we observe the 
same EKF performances over the two distributions. For high rates, the fit on negative binomial 
counts deteriorates and starts to become comparable to that of the static model. For the highest 
rate in the simulation study, the signal-to-noise ratio in the data is so low that the inference pro
cedure diverges in all the simulations. However, it is interesting to note that for highly sparse 
counts of relational events, the inference procedure always converges (for more details, see 
Online Supplementary Materials F).

Alternative methods
In the various simulations, we compare the EKF implementation with two possible competitors. 
The Unscented Kalman filter uses a so-called unscented transformation as an alternative to the 
EKF linear approximation of non-linear equations. For details, we remand the reader to the 
Online Supplementary Materials E. The static model refers to the latent space implementation 

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/186/3/508/7126053 by Biblioteca universitaria di Lugano user on 04 Septem

ber 2024

http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad042#supplementary-data
http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnad042#supplementary-data


J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 3                                                          523

with non-dynamic states, described in Section 4.4. Figure 5a–d show that the EKF and UKF have 
very similar performances in terms of KL divergence, whereas the computational costs are very 
similar (Online Supplementary Materials F). In general, it can be seen that ignoring state dynamics 
can be highly detrimental, as the KL divergence of the static model is typically much higher than 
that of the EKF. However, there is one exception: if the model is highly misspecified and the dis
persion is much higher than that of a Poisson, then the static model becomes more robust and 
starts to become competitive.

Modeling endogeneous effects
On the one hand, endogeneous effects, such as reciprocity or triadic effect, are drivers of relational 
events that depend on the past structure of the network. Other the other hand, the latent space 
itself also encapsulates part of the network structure. Therefore, it is important to check whether 
endogeneous effects are identifiable in the presence of latent dynamics. Figure 5e shows the mean 
squared error (MSE) of the estimated reciprocity for four different reciprocity strength in a simu
lation study across increasing number of nodes p. The results show that the MSE decreases roughly 
as 1/p, which is consistent with the fact that the information grows quadratic with the number of 
nodes.

Modeling larger networks
The simulations so far were performed on relatively small networks with p ≤ 50, a dimension that 
is achievable for a custom implementation in the R language. For larger networks, we created an 
implementation in Tensorflow and performed the simulations on Google Colab using its free GPU 
resources. Figure 5f shows the computational time for larger networks. The 100 nodes model con
verges in roughly 22 s, whereas for networks with 500 nodes roughly 20 min are needed. 
Computational time seems to increase roughly quadratically in the number of nodes. Another 
common computational bottleneck in large networks is that the number of observations carried 
by the adjacency matrix and the related machine operations grow quadratically with the number 
of nodes. In that case stratified subsampling (Raftery et al., 2012) on the adjacency matrix 

(a) (b) (c)

(d) (e) (f)

Figure 5. Kullback–Leibler measure shows that the EKF and UKF both improve performance with (a) additional 
number of nodes p and (b) interval n, while slightly deteriorates when (c) increasing the latent dimension d. (d) 
Shows the effects of model misspecification, (e) the reliability of endogeneous effect estimation in our latent space 
formulation. (f) Computational time grows markedly in the number of nodes p. (a) Nodes. (b) Sub-intervals. (c) Latent 
dimension. (d) Overdispersion. (e) Reciprocity strength. (f) Computational time.
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elements could reduce the computational burden. Using this idea, a pilot Kalman filter can be run 
to calculate the stratum contribution via the increment in the expected log-likelihood. Other ideas, 
such as parallel Kalman Filters (Särkkä & García-Fernández, 2020) where multiple time points 
can be computed in parallel, can only be implemented if the memory consumption of each individ
ual Kalman filter iteration is small, which is not our case.

6 Dynamics of patent citation patterns
The patent citation process introduced in Section 2 presents some peculiar characteristics with re
spect to the underlying relational event: patents are added in tranches to the system, and citations 
happen only at the moment of patent creation. Furthermore, patents can cite only those patents 
that have previously been created and not the ones that are added to the network in the future. 
Therefore, rather than focusing on the individual patents, we focus on the citations between 
groups of patents, such as the patent classes and subclasses, described above. Our aim is to de
scribe the relative changing importance of each of these (sub)classes over time in being cited as pri
or art in novel patents. We consider the latent space model for the number of citations yk,ij from 
patents of field i to patents of field j at time k,

yk,ij ∼ Poi(μk,ij(xk, β))

log (μk,ij(xk, β)) = log Ci(k) + α0 − ‖xki − xkj‖
2
2 + senderi + receiver j,

(12) 

where α0 is an intercept and senderi and receiver j are, respectively, the sender and receiver random 
effects. We include random effects in the linear predictor as the usual conditional formulation of 
the regression model. The citation rate is proportional to the number of patents Ci(k) added in a 
field within a year. If in a certain year there are no patents added in a field, the rate would clearly be 
zero. We therefore specify an additional offset log Ci(k) that accounts for the number of patents 
added in field i at time k. The inclusion of the offset has the advantage that the interpretation 
of the latent space locations and other effects is with respect to a single patent in each (sub)class. 
As the aim is to explore the major relative movement of each of the (sub)classes, we consider here a 
bidimensional latent space. Optimal starting points are calculated via the static model as described 
in Section 4.5.

Figure 6 shows a peculiar behaviour of the latent locations of the eight main technology classes. 
They seem to be more or less static in the initial 10 years from 1967 until 1976. Patents can only 
cite back in time and therefore the first patents added in the system cannot cite patents submitted 
before the year 1967. The apparent stationarity may therefore be an artifact. The figure suggests 

(a) (b)

Figure 6. Changes in latent space patent locations. (a) The two coordinates for each of the eight main classes are 
shows in the same figure. The first ten years show a static behaviour in citations. After that point, the fields start 
moving closer as the citations between fields intensify; (b) the overall change in latent space locations of the eight 
main classes over the entire period of 1967–2006.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/186/3/508/7126053 by Biblioteca universitaria di Lugano user on 04 Septem

ber 2024



J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 3                                                          525

that around 1976 the patent citation process start behaving more ‘normally’, i.e., it starts to re
present more representatively the bulk of the citation process. This seems reasonable as patents 
cite an average of 10 years back in time, with a mode that is significantly less than 10 years.

In general, we observe that the exchange of citations between different fields increases through 
time, ending with a large cluster including the majority of the ICL categories. Only classes C 
(chemistry and metallurgy) and H (electricity) remain somewhat separate from the other main 
classes. The overall conclusion is that except for classes C and H, the other main technology classes 
lose their specific characteristics and patents tend to cite more across technology class borders. 
This suggests that most technology classes are becoming less dissimilar: there is an increasing het
erogeneity within the fields, as they communicate with other technology fields, and thus a higher 
homogeneity between the fields.

The sender and receiver effects can be interpreted as the asymmetry between fields citations that 
the symmetric latent space representation fails to capture. Figure 7b shows how the Textile, 
Papers, and Fixed constructions classes are very low receiver classes, meaning that they are cited 
below average. Figure 7 shows that Physics patents a low tendency to cite others. The high sending 
and receiving tendencies of the chemistry, metallurgy, and electricity patents must be seen in the 
context of Figure 6: the fact that we observe such huge effects jointly together with their distant 
location to the other patent classes might suggest some violation of the model assumptions. The 
two locations should be closer to the main cluster but there does not exist a 2D latent configuration 
that makes a good fit. An analysis without sender and receiver effects (Online Supplementary 
Materials G) indeed shows that those two classes would be apparently closer, joining the other 
technology classes.

6.1 Extending the analysis to subclass dynamics
The eight main technology classes give a rough overview of the patent dynamics. However, given 
that we analyze more than 23 million citations, a finer analysis should reveal more detailed results. 
We therefore extend the analysis to the subclass level of the patent classification system. The eight 
main technology classes consist of a total of 487 more specific subclasses.

Figure 8 shows the latent dynamics for all the 487 subclasses, where the color refers to the ori
ginal eight main technology classes. What is immediately clear is that the dynamics within a single 
technology class is quite diverse. Figure 8a shows that the subclasses are evenly spread in the latent 
plane. Moreover, by inspecting single subclass trajectories, it emerges that a subclass tends to move 
with few subclasses from within the same main technology class, but also with some subclasses 
from another class. This is consistent with the raw data, as approximately half of a patent’s con
nectivity is within the same class, while the rest is towards other classes.

Figure 8 also shows that subclasses are heterogeneous in their citation behaviour from the be
ginning, and that not all the subclasses converge to a single cluster. Technology subclasses end 

(a) (b)

Figure 7. Model inference on dynamic locations for the relational event model with sender and receiver effects. (a) 
shows a summary of the movement of the patent classes in the observed time interval. (a) Sender effect. (b) 
Receiver effect.
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up forming three heterogeneous clusters, as evidenced by Figure 8d. As time passes, the bottom left 
nodes separate from the centre and converge into a dense cluster, revealing an increasing hetero
geneity in their citation. On the top left, something similar happen although this cluster is less 
dense as its nodes do not seem to shorten their distances. Nodes belonging to clusters with such 
a flatten shape typically present high connectivity with the immediate neighbour, but this connect
ivity does not extend to distant nodes, creating a chain where the two poles share little similarity. 
At the centre, by looking at the inward arrows, it is possible to spot a third, low density cluster 
which is separating from the other two. We conclude that the increment of heterogeneity in patent 
citations is not uniform across all subclasses. There is some coordinated movement from the three 
clusters of subclasses. Patents within these clusters tend to get more similar citing behaviour, 
whereas patents between these clusters tend to cite each other less. It is interesting to note that 
the apparent converging behaviour of the main technology classes in Figure 6 is simply the result 
of aggregating the subclasses where the diverging movements are averaged out.

7 Conclusion
In the last decade, REMs have been used for describing the drivers of dynamic network interac
tions. Traditional approaches focus on endogeneous and exogeneous drivers, which may not al
ways be able to capture all heterogeneity in the data. Our aim has been to extend relational 
event modelling by letting their interactions depend on dynamic locations in a latent space.

The model defines the latent locations as missing states, where the observations are the time- 
stamped relational events or aggregates of those events within a certain interval. We use an EM 
algorithm, whereby a Kalman filter calculates their conditional expectation and a generalized lin
ear model formulation performs the maximization step. Kalman filters are effective methods for 
estimating latent dynamic processes. Their simplicity and computational efficiency make them 
suitable for many problems common in engineering contexts. The filter relies on a sequence of 

(a) (b)

(c) (d)

Figure 8. Dynamic latent locations for the 487 technology subclasses. The colors correspond to the original eight 
main technology classes. (a) Initial configuration in 1967. (b) Changes in years 1967–1980, (c) changes in years 1980– 
1993, and (d) changes in years 1993–2006.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/186/3/508/7126053 by Biblioteca universitaria di Lugano user on 04 Septem

ber 2024



J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 3                                                          527

linear operations and easily calculates the expectation step, typically untractable for non-trivial 
cases. The Kalman filter dual interpretation in the Bayesian and frequentist literature would 
also make an effective Gibbs possible. Current Bayesian approaches, such as Sewell and Chen 
(2015), rely on a simplified stratified case-control sampling of non-events. As there are many 
more non-events with distant nodes, mid-distances are either never sampled or sampled and over
weighted by an inappropriate case-control weight. Although this reduces computational complex
ity, this produces bias in the inference procedure.

It is easy to extend the linearity of the exogeneous and endogeneous effects in the model formu
lation (2) to smooth effects. The generalized linear model approach for the M-step can easily be 
replaced by a generalized additive setup for incorporating smooth and time-varying effects as 
well as random effects (Wood, 2006). The simulation results show that the modelling and infer
ence set-up is accurate, computationally feasible, and insightful under different scenarios.

We applied the model to 23 million patent citations from the US patent office in order to inves
tigate the innovation dynamics in the period 1967–2006. Focusing on the eight main technology 
classes suggests that there is an overall convergence in the latent space, meaning that the patents 
classes are becoming either more similar or more internally dissimilar. A subsequent analysis on 
the 487 subclasses revealed that the second hypothesis explains most of the apparent convergence: 
it seems that the subclasses within each main technology class have coordinated, but diverging dy
namics, which suggest that the main technology classes have become more dissimilar over time. 
This may be because the original class denominations refer to distinctions that have become less 
relevant over time. For this reason, it would probably be good to avoid using the main technology 
classes as important descriptors of patents, and instead focus on their subclass denominations.
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